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ABSTRACT
Physical activity (PA) estimates from the Fitbit Flex 2 were compared to those from the ActiGraph 
GT9X Link in 123 elementary school children. Steps and intensity-specific estimates of PA and 
3-month PA change were calculated using two different ActiGraph cut-points (Evenson and 
Romanzini). Fitbit estimates were 35% higher for steps compared to the ActiGraph. Fitbit and 
ActiGraph intensity-specific estimates were closest for sedentary and light PA, while estimates of 
moderate and vigorous PA varied substantially depending upon the ActiGraph cut-points used. 
Spearman correlations between device estimates were higher for steps (rs = .70) than for moderate 
(rs =.54 to .55) or vigorous (rs =.29 to .48) PA. There was low concordance between devices in 
assessing PA changes over time. Agreement between Fitbit Flex 2 and ActiGraph estimates may 
depend upon the cut-points used to classify PA intensity. However, there is fair to good agreement 
between devices in ranking children’s steps and MVPA.
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Introduction

Fitbit devices were introduced in 2008 as a commercially 
available tool for individuals to track their daily steps, 
calories, and sleep (Evenson et al., 2015). The first mod
els (e.g., Ultra, One, Zip) were clip-on devices that could 
be worn at the waist, pocket, or bra, but all models 
introduced after 2013 are wrist-worn devices. Early 
wrist-worn Fitbits, such as the Flex and the Flex 2, 
were mainly limited to estimating physical activity 
metrics. Currently available models (e.g., Ace 3, Charge 
5, Inspire 2, Sense) include measurements of heart rate, 
blood oxygen levels, and sleep stages. Although origin
ally intended for personal monitoring, Fitbit devices are 
increasingly being used to measure physical activity in 
research studies conducted in adults (Feehan et al., 
2018) and children (Byun et al., 2018; Cradock et al., 
2019; Evans et al., 2017). One reason for this increased 
use may be high compliance among research partici
pants due to the familiarity and acceptability of Fitbit 
devices. For example, over 90% of women in the Nurse’s 
Health Study 3 (NHS) Mobile Health Substudy wore 
their assigned Fitbit device for 10+ hr/d on 5 or more 
days during the first week of the study (Fore et al., 2020). 
Other factors facilitating the increased research use of 

Fitbits may include the ability to obtain minute-by- 
minute activity metrics, and lower researcher costs and 
burden relative to research-grade activity monitors 
(Feehan et al., 2018).

To date, Fitbit devices have been used to estimate and 
compare physical activity levels in population subgroups 
and to estimate changes in physical activity over time. 
Because studies may use Fitbit devices as the primary 
physical activity measurement tool, there is a need to 
accumulate evidence supporting the validity of Fitbit 
estimates for these uses in real-world settings and 
among diverse populations. Toward this goal, Evenson 
et al. (2015) reviewed 16 studies that evaluated the 
validity of one or more physical activity metrics (e.g., 
steps/day, moderate to vigorous physical activity 
[MVPA] min/day) from several Fitbit models in adult 
samples. Most of the studies compared Fitbit step esti
mates during laboratory-based activities to observed or 
accelerometer measured steps and found strong correla
tions (≥ .80), with Fitbits being slightly more accurate 
when worn on the hip compared to the wrist. 
A subsequent review by Feehan et al. (2018) updated 
the evidence and included 13 studies that estimated the 
validity of Fitbit step estimates in free-living conditions. 
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In healthy young adults, Fitbit step estimates were 
within ±10% of research-grade accelerometer estimates 
in nine of these studies, although the Fitbit tended to 
overestimate steps compared to the criterion measures 
by approximately 8%. Averaged across seven studies, 
Fitbit estimates of free-living MVPA were 85% higher 
than ActiGraph estimates.

In comparison to the robust literature for adults, few 
studies have examined the validity of Fitbit devices in 
school-age youth, with only five studies identified that 
examined the validity of step and/or MVPA estimates 
among children. Three studies (Godino et al., 2020; Hao 
et al., 2021; Kang et al., 2019) evaluated wrist-worn 
models (Charge HR and Flex) and each of these studies 
compared the accuracy of the Fitbit to research-grade 
measures during standardized laboratory- and field- 
based activities. The accuracy of Fitbit step estimates 
varied by model and protocol, with the Flex overestimat
ing steps by 21% compared to a wrist-worn ActiGraph 
GT3X+ (mean absolute percent error [MAPE] = 21.9%; 
Hao et al., 2021), while the Charge HR underestimated 
ambulation by 11.8 steps/min compared to video obser
vation (MAPE = 9.9%; Godino et al., 2020). The Charge 
HR also showed a moderate-to-high level of accuracy 
(71–85%) in classifying minutes spent in MVPA 
(Godino et al., 2020; Kang et al., 2019).

While three studies have examined the validity of 
wrist-worn devices in school-aged youth, none were 
conducted during free-living conditions. This is an 
important limitation as children are likely to spend 
most of their time in non-structured physical activities, 
which may be more difficult to accurately capture in the 
laboratory. Wrist-worn devices may be especially prone 
to error during these types of activity if they consist of 
arm actions without corresponding whole-body move
ments. These studies were also conducted in relatively 
small samples (19 to 59 children) and included only 
children aged 8 years and above. Further, prior studies 
in youth have not compared the ability of Fitbit devices 
to capture changes in activity over time relative to 
research-grade devices. This is an important omission 
given that Fitbit devices are being used to track changes 
in steps and MVPA in research studies (Buchele Harris 
& Chen, 2018; Evans et al., 2017; Hayes & Van Camp, 
2015) and cross-sectional findings may not reflect the 
ability of Fitbit devices to accurately estimate longitudi
nal changes in PA.

To address the noted research gaps, this study com
pared estimates of free-living physical activity from 
a wrist-worn Fitbit Flex 2 to estimates from a waist- 
worn ActiGraph GT9X Link in a diverse sample of 
elementary school children. Two alternative sets of cut- 
points were used to derive intensity-specific PA 

estimates from the ActiGraph in order to examine the 
effect of cut-point selection on the level of agreement 
between Fitbit and ActiGraph devices. A secondary aim 
was to compare Fitbit and ActiGraph estimates of phy
sical activity change over a 3-month period. We chose to 
use a waist-worn ActiGraph as the criterion measure for 
this study as this wear location has demonstrated super
ior accuracy in classifying physical activity intensity 
compared to a wrist-worn ActiGraph (Migueles et al., 
2017) and is the most common location of ActiGraph 
wear in studies evaluating consumer wearable devices 
(Gorzelitz et al., 2020).

Methods

Study design and participants

Data for this analysis were collected in 2018–2019 dur
ing the first year of an ongoing technology-based inter
vention intended to increase physical activity 
participation among 6–11-year-old children attending 
12 YMCA after-school programs in the metro Atlanta 
region (Georgia, USA). Details of the parent study inter
vention, including participant recruitment strategies 
and compensation, have been published elsewhere 
(Hahn et al., 2020). Parent consent and child assent 
were obtained for all study participants, and study pro
cedures were approved by the university’s institutional 
review board.

Briefly, children in both the intervention and control 
arms of the study were asked to wear a Fitbit Flex 2 
activity monitor continuously for one academic year, 
and a subsample of children was invited to wear an 
ActiGraph GT9X activity monitor for seven continuous 
days at four points throughout the year (baseline, and 3, 
6, and 9 months after the intervention’s start). 
Researchers also measured children’s body composition 
and administered self-report surveys to children at these 
four time points. The current study reports data 
obtained from a subsample of children who wore both 
a Fitbit Flex 2 and an ActiGraph GT9X at the baseline 
and 3-month measurement periods. These periods were 
selected to examine the agreement between devices in 
estimating physical activity changes during the time 
period where the largest changes in children’s activity 
levels were expected to occur due to the intervention.

Measures

Fitbit flex 2
To obtain daily physical activity information, children 
were instructed to continuously wear a Fitbit Flex 2 
(Fitbit Inc., San Francisco, CA) activity tracker on their 
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non-dominant wrist (default setting) except during 
device charging and when wear was prohibited during 
organized sports. This device uses data from an internal 
3-axis accelerometer to estimate steps and minutes accu
mulated at three physical activity intensity levels (lightly 
active, fairly active, and very active intensity). Although 
the algorithms used to determine physical activity inten
sity are proprietary, it has been assumed that these 
categories approximately correspond to light (1.6–2.9 
METs), moderate (3.0–5.9 METs), and vigorous (≥6.0 
METs) physical activity. All other minutes were 
assumed to be of sedentary intensity (≤1.5 METs). 
Periodically, minute-by-minute device data were auto
matically uploaded to the Fitbit online platform and 
subsequently downloaded through an application- 
programming interface. Upon enrollment, parents 
were asked to give researchers permission to view and 
record their child’s Fitbit data for the duration of the 
study.

In the absence of a standard procedure, daily Fitbit 
wear times were estimated using a modification of the 
Choi algorithm (Choi et al., 2011) developed for use 
with ActiGraph accelerometer data. Specifically, 90 min
utes of consecutive zero step counts, instead of acceler
ometer counts, were used to identify periods of probable 
non-wear. Similar methods have been used to assess 
Fitbit wear times in studies of both children (Byun 
et al., 2018; Cradock et al., 2019) and adults (Collins 
et al., 2019; Dominick et al., 2016).

ActiGraph GT9X
In addition to the Fitbit, at each of the four measure
ment periods up to 20 children at each after-school 
program were fitted with ActiGraph GT9X acceler
ometers (ActiGraph Corp., Pensacola, FL) attached to 
an elastic belt and positioned at the mid-axillary line of 
the right hip. The devices were set to display only the 
current time. Children were verbally instructed to wear 
the device during all waking hours, except for water- 
based activities, for seven consecutive days. Parents 
received detailed written instructions and text message 
reminders during the wear-period and were asked to 
record the times the device was worn daily and reasons 
for non-wear.

For this analysis, ActiGraph devices were equipped 
with Firmware version 1.7.1 and Actilife software version 
6.13.4 was used to initialize and download data in 1-min
ute epochs to match the data output from the Fitbit 
devices. Accelerometer count values during each epoch 
were used to classify each minute into a physical activity 
intensity category (i.e., sedentary, light, moderate, vigor
ous) using two alternative sets of age-appropriate cut- 
points (Evenson et al. (2008); (Romanzini et al., 2014)). 

Briefly, the Evenson cut-points were developed in 5– 
8 year-old children and use only vertical axis counts to 
determine PA intensity (Sedentary: 0–100 counts 
per minute (cpm); Light: 101–2295 cpm; Moderate: 
2296–4011 cpm; Vigorous: ≥4012 cpm). The Romanzini 
cut-points were developed in 10–15 year-old youth and 
are based on the vector magnitude of count values from 
triaxial ActiGraph models (Sedentary: 0–720 counts 
per minute (cpm); Light: 721–3027 cpm; Moderate: 
3028–4447 cpm; Vigorous: ≥4448 cpm).

To match the approach used with the Fitbit data, 
periods of device wear were estimated using a modified 
version of the Choi algorithm (Choi et al., 2011), where 
periods with consecutive zero step values for 90 minutes 
or longer were classified as non-wear. To examine the 
impact of applying the Choi algorithm to steps, we 
compared ActiGraph wear time estimates generated 
from steps versus estimates generated from counts 
using data from 183 children collected during the first 
four complete days of baseline data collection. Wear 
times based on ActiGraph steps were only 2.4% lower 
than mean estimates derived from ActiGraph counts, 
and estimated wear times did not differ between the 
approaches on 60% of days. The correlation between 
the wear time estimates was .989.

ActiGraph reliability and validity have been consis
tently demonstrated (Trost et al., 2005) and it has been 
shown to correlate reasonably with activity energy 
expenditure measured by doubly labeled water (Plasqui 
et al., 2013; Plasqui & Westerterp, 2007).

Body size
Children’s height and weight were obtained at the base
line, 3-, 6-, and 9-month measurement periods. All 
measures were taken in light clothing and with shoes 
and socks removed. Height was measured to the nearest 
.1 cm using a Hopkins Road Rod portable stadiometer 
(Caledonia, MI) and body weight (to the nearest .1 kg) 
was measured using a Tanita BF-689 Children’s Body 
Fat Monitor (Arlington Heights, IL). Age- and sex- 
specific BMI percentiles were used to classify children 
as overweight (85th to <95th percentile) and obese (≥95th 

percentile; Barlow & Expert, 2007).

Demographics
In the parent’s self-report surveys at baseline, information 
was obtained about the parents’ socio-economic status 
and about their child’s age, gender, and race/ethnicity.

Data processing

For this analysis, the available Fitbit and ActiGraph data 
were first restricted to those minutes when both devices 
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were worn and then to days with at least 8 hr of con
cordant wear per day. As the goal of this study was not to 
estimate the habitual physical activity levels of the study 
participants, but to compare the estimates from two 
monitors during concordant wear periods, we included 
all children with at least one 8 hr day of concordant 
wear. Daily estimates of physical activity were then 
divided by the duration (in hours) the devices were 
worn to derive physical activity metrics per hour of 
device wear. Daily Fitbit and ActiGraph estimates of 
activity were then averaged for each child. To compare 
Fitbit and ActiGraph estimates of physical activity 
change, separate estimates were calculated using data 
collected at baseline and at the 3-month data collection 
period. Changes in Fitbit and ActiGraph physical activ
ity metrics were derived by subtracting average baseline 
values from average 3-month values for each device.

Statistical analysis

Descriptive statistics and histograms were obtained for 
all continuous variables at both the day and subject level 
to assess normality and to screen for data anomalies. 
Scatterplots were used to examine the nature of the 
relationship between corresponding Fitbit and 
ActiGraph estimates of activity and to identify poten
tially influential data points. Because of the presence of 
influential outliers and the non-normality of some vari
ables, Spearman correlations were used to examine the 
strength of the monotonic relationships between corre
sponding physical activity estimates, and 95% confi
dence intervals (CI) were calculated based on Fisher 
transformation.

Equivalence tests were performed to assess the agree
ment between the Fitbit and ActiGraph estimates of 
physical activity. Because our data were paired, we cal
culated the mean difference between the paired observa
tions for each activity estimate along with the 90% 
confidence interval (CI) of the difference. This interval 
was compared to an equivalence region of ±10% of the 
mean ActiGraph estimates (generated separately using 
the Evenson and the Romanzini cut-points). The Fitbit 
estimate is considered significantly equivalent to an 
ActiGraph estimate with p < .05 when the 90% CI of 
the difference is completely within the designated 
equivalence region (Dixon et al., 2018). Mean 
absolute percent deviations (MAPD) with 95% CIs 
were calculated as an additional measure of agreement 
between the Fitbit estimates and the two sets of 
ActiGraph estimates. MAPD values were also calculated 
to assess the agreement between ActiGraph PA esti
mates generated using the Evenson versus Romanzini 
cut-points. Because most studies require a minimum 

number of valid wear days for inclusion in study ana
lyses, key comparisons were repeated after restricting 
our sample to children with at least four valid days of 
wear for both devices (n = 86).

Physical activity estimates were separately created for 
data collected at baseline and at 3-months into the data 
collection. Changes in Fitbit and ActiGraph estimates of 
physical activity (3-month minus baseline) were calcu
lated in 40 children who simultaneously wore both 
devices for at least one valid day (i.e., 8+ hr) and these 
changes were compared using Spearman correlations. 
A sensitivity analysis was run in a subsample of 21 
children who had 3+ days of concordant wear at both 
baseline and 3-months. All analyses were conducted 
using SAS version 9.4 (SAS Institute, Inc., Cary, NC) 
and statistical significance was set at an alpha level of .05.

Results

During the overlapping wear periods, there were 
660 days where both the ActiGraph and Fitbit device 
were simultaneously worn for at least 8 hr. A total of 123 
children had at least one valid measurement day with 
both devices [mean (SD) wear time of 12.2 (1.4) hr/day], 
with 86 children having ≥4 valid days [mean (SD) wear 
time of 12.3 (1.2) hr/day]. As detailed in Table 1, chil
dren with at least one valid day were diverse in sex, race/ 
ethnicity, and parental income [55.3% male, 61.7% non
white and non-Hispanic, and 31.7% earning <$50,000 
(among those reporting)]. A majority of children were 
either overweight (41.0%) or obese (23.8%) based on 
BMI percentile cut-points.

Table 1. Descriptive characteristics of study participants 
(n = 123).

Demographics M ± SD (range) or N (%)

Age 
Sex  

Male  
Female 

Race/Ethnicity  
White non-Hispanic  
Black non-Hispanic  
Hispanic  
South Asian  
Other a  

Not Reported 
Parent Income  

<$50,000  
$50,000-$99,999  
≥$100,000  
Not Reported 

Weight (kg) 
Height (cm) 
Body Mass Index (kg m−2) 
Body Mass Index (percentile)

8.1 ± 1.4 (6–11)  

68 (55.3%) 
55 (44.7%)  

44 (35.8%) 
44 (35.8%) 
10 (8.1%) 
12 (9.8%) 
5 (4.1%) 
8 (6.5%)  

32 (26.0%) 
22 (17.9%) 
47 (38.2%) 
22 (17.9%) 

33.1 ± 9.7 (17.5–61.7) 
133.1 ± 10.3 (106.9–161.0) 

18.3 ± 3.5 (13.1–28.9) 
68.7 ± 27.8 (.8–99.7)

Note. Weight, height, and body mass index values missing for one partici
pant (n = 122). 

aIncludes n = 3 East Asian and n = 2 who reported “other” or “mixed” race.
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Among children with at least one valid day, Fitbit step 
estimates were approximately 35% higher (228.4 steps/ 
hr) than ActiGraph estimates and were deemed not 
equivalent as the 90% CI of these differences (199.8– 
257.1) extended well beyond the equivalence region 
(±65.9; Table 2). For an average subject with 14 hr of 
device wear, this would translate to about 3200 addi
tional steps/day recorded by the Fitbit device. 
Equivalence testing also indicated non-equivalence 
between all Fitbit and ActiGraph intensity-specific mea
sures based on the Evenson cut-points (AG_Evenson), 
as the 90% CIs of the mean differences extended outside 
of the designated equivalence regions. Using the 
Romanzini ActiGraph cut-points (AG_Romanzini), 
Fitbit estimates of sedentary time were found to be 
equivalent, with a mean difference of approximately 
.4 minutes per hour. However, all other 
AG_Romanzini intensity-specific estimates were not 
equivalent to the Fitbit estimates. Compared to the 
AG_Evenson estimates, Fitbit estimates were about 
10% lower for moderate intensity and 37% higher for 
vigorous intensity activity (comparing medians) and 
overall MVPA estimates were 12% higher from the 
Fitbit. In contrast, Fitbit estimates were about 40% 
lower for moderate intensity and 65% lower for vigorous 
intensity activity (comparing medians) than 
AG_Romanzini estimates. Similar differences in step 
estimates from each device were observed when com
parisons were restricted to children with at least 4 valid 
days. Differences between Fitbit and AG_Evenson esti
mates of MVPA were attenuated but remained non- 
equivalent.

Mean absolute percent deviations (MAPD) between 
Fitbit and ActiGraph estimates, as well as between 
AG_Evenson and AG_Romanzini estimates, are shown 
in Table 3. Compared to AG_Evenson estimates, Fitbit 
estimates of sedentary and light PA had the lowest 
MAPD values while vigorous PA estimates had the high
est MAPD values. MAPD values were similar when 
Fitbit estimates were compared to AG_Romanzini esti
mates, although values were modestly lower for seden
tary estimates (14.0 vs. 25.1) and substantially lower for 
vigorous PA estimates (66.0 vs. 264.0). Interestingly, 
when AG_Evenson and AG_Romanzini estimates were 
compared, MAPD values were similar in magnitude to 
those from the Fitbit and AG_Romanzini comparisons 
and lower than those from the Fitbit and AG_Evenson 
comparisons (except for light intensity). Similar patterns 
were observed when MAPD values were calculated only 
among children with at least 4 valid days.

Scatterplots generally revealed linear relationships 
between like estimates from the ActiGraph and Fitbit, 
although several potentially influential outliers (e.g., sub
jects with very high Fitbit steps but very low ActiGraph 
steps) were apparent and not due to any identifiable data 
processing errors. Therefore, Spearman correlations were 
calculated between like activity estimates from the 
ActiGraph and Fitbit (Table 4). The strongest correlations 
were observed between step estimates in both the full (rs = 
.70) and restricted samples (rs = .79). Fitbit intensity- 
specific estimates were more moderately correlated 
ActiGraph estimates and were similar in magnitude 
regardless of the ActiGraph cut-point used. The only 
exception was for vigorous intensity activity, in which 

Table 2. Comparison of Fitbit and ActiGraph activity estimates, all subjects (n = 123) versus those with 4+ Valid days (n = 86).
Evenson Cut-points Romanzini Cut-points

Activity Estimates
Fitbit 
(M ± SD) Equivalence Region

Actigraph 
(M ± SD)

Mean Difference 
(90% CI)

Actigraph 
(M ± SD)

Mean Difference 
(90% CI)

All Subjects
Steps (per hr) 
Intensity (min/hr)

886.5 ± 230.5 (-65.9, 65.9) 658.1 ± 175.8 228.4 (199.8, 257.1) 658.1 ± 175.8 228.4 (199.8, 257.1)

Sedentary 33.4 ± 3.9 (-2.85, 2.85) 28.5 ± 6.5 4.88 (4.00, 5.75) 33.0 ± 6.8 0.41 (-0.44, 1.27)
Light 23.1 ± 3.1 (-2.83, 2.83) 28.3 ± 5.8 -5.25 (-6.03, -4.48) 20.7 ± 5.1 2.37 (1.68, 3.06)
Moderate 2.2 ± 1.3 (-0.25, 0.25) 2.5 ± 1.1 -0.25 (-0.43, -0.08) 3.7 ± 1.4 -1.47 (-1.68, -1.27)
Vigorous a 1.3 ± 1.2 (-0.07, 0.07) 0.7 ± 0.5 0.63 (0.46, 0.80) 2.6 ± 1.4 -1.28 (-1.49, -1.07)
MVPA 3.5 ± 2.3 (-0.32, 0.32) 3.2 ± 1.4 0.38 (0.08, 0.68) 6.3 ± 2.6 -.2.76 (-3.12, -2.40)

Subjects with 4+ days
Steps (per hr) 
Intensity (min/hr)

865.6 ± 202.4 (-65.9, 65.9) 658.8 ± 141.4 206.8 (184.5, 229.1) 658.8 ± 141.4 206.8 (184.5, 229.1)

Sedentary 33.4 ± 3.7 (-2.78, 2.78) 27.8 ± 5.1 5.57 (4.77, 6.38) 32.4 ± 5.6 0.99 (0.19, 1.79)
Light 23.3 ± 3.0 (-2.90, 2.90) 29.0 ± 4.4 -5.69 (-6.42, -4.95) 21.3 ± 4.1 2.00 (1.30, 2.70)
Moderate 2.1 ± 1.1 (-0.25, 0.25) 2.5 ± 1.0 -0.41 (-0.59, -0.23) 3.7 ± 1.1 -1.62 (-1.82, -1.43)
Vigorous b 1.2 ± 1.0 (-0.07, 0.07) 0.7 ± 0.4 0.52 (0.35, 0.69) 2.5 ± 1.3 -1.34 (-1.55, -1.13)
MVPA 3.3 ± 2.0 (-0.32, 0.32) 3.2 ± 1.3 0.11 (-0.19, 0.41) 6.2 ± 2.2 -2.96 (-3.32, -2.60)

Note. MVPA = moderate and vigorous intensity physical activity. 
aMedian (IQR) were .85 min/hr (.48, 1.91) for Fitbit, .62 min/hr (.33,.94) for ActiGraph (Evenson), and 2.49 min/hr (1.57, 3.44) for ActiGraph (Romanzini). 
bMedian (IQR) were .79 min/hr (.49, 1.90) for Fitbit, .63 min/hr (.34, .94) for ActiGraph (Evenson) and 2.48 min/hr (1.71, 3.34) for ActiGraph (Romanzini).
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Fitbit estimates were more strongly correlated with 
AG_Romanzini estimates (rs = .48 vs. rs = .29). As 
expected, strong correlations were observed between 
AG_Evenson and AG_Romanzini intensity-specific esti
mates, with time spent in MVPA having the highest 
correlation (rs = .92). When restricted to only those chil
dren with 4+ valid measurement days (n = 86), similar 
correlations were observed for all comparisons.

To examine the concordance of Fitbit and ActiGraph 
estimates of physical activity change, changes in steps 
and MVPA over a 3-month period were calculated for 

a subset of 40 children who simultaneously wore both 
devices for at least one valid day (i.e., 8+ hr) during the 
baseline and the 3-month follow-up periods. Mean (SD) 
3-month changes in ActiGraph measured physical activ
ity were small [−18.3 (193.7) steps/hr, +.18 (1.89) MVPA 
min/hr for AG_Evenson, and −.26 (2.62) MVPA min/hr 
for AG_Romanzini]. The Fitbit estimated change in 
steps was an average of 27.2 steps/hr higher than 
ActiGraph estimates (p = .53), while the Fitbit estimated 
change in MVPA was .23 min/hr lower (p = .64) than the 
AG_Evenson estimate and .20 min/hr higher (p = .73) 

Table 3. Mean absolute percent deviations (MAPD) between Fitbit and ActiGraph activity estimates, all subjects (n = 123) versus those 
with 4+ Valid days (n = 86).

Fitbit vs. Evenson Fitbit vs. Romanzini Evenson vs. Romanzini

Activity Estimates
MAPD 

(95% CI)
MAPD 

(95% CI)
MAPD 

(95% CI)

All Subjects
Steps (per hr) 
Intensity (min/hr)

45.1 (30.6, 59.6) N/A N/A

Sedentary 25.1 (21.6, 28.5) 14.0 (12.1, 15.9) 13.7 (12.3, 15.1)
Light 24.1 (19.5, 28.6) 29.8 (16.5, 43.0) 40.1 (36.6, 43.6)
Moderate 43.0 (33.9, 52.1) 48.4 (42.2, 54.5) 33.9 (30.9, 36.9)
Vigorous 264.0 (120.5, 407.5) 66.0 (58.7, 73.4) 73.9 (71.8, 76.0)
MVPA 59.9 (44.8, 74.9) 50.6 (45.5, 55.7) 50.3 (48.6, 52.0)

Subjects with 4+ days
Steps (per hr) 
Intensity (min/hr)

32.8 (28.6, 36.9) N/A N/A

Sedentary 24.6 (20.8, 28.5) 12.5 (10.3, 14.7) 14.0 (12.5, 15.6)
Light 20.6 (18.5, 22.7) 18.4 (14.2, 22.6) 38.0 (34.5, 41.4)
Moderate 33.9 (27.8, 39.9) 44.1 (39.1, 49.0) 33.8 (30.5, 37.0)
Vigorous 180.5 (107.4, 253.5) 61.0 (55.0, 67.0) 74.0 (72.2, 75.9)
MVPA 43.2 (33.2, 53.3) 49.1 (44.3, 53.9) 50.1 (48.4, 51.8)

Note. MVPA = moderate and vigorous intensity physical activity.

Table 4. Spearman correlations between Fitbit and ActiGraph estimates of similar activity metrics, all subjects versus those with 
4+ Valid days.

Activity Estimates

All 
Subjects 
(n=123) 95% CI

Subjects 
with 4+ Days 

(n=86) 95% CI

Steps (per hr) .70 .59, .78 .79 .69, .86
Fitbit vs. Evenson 
Time by Intensity (min/hr)

Sedentary .47 .32, .60 .46 .28, .61
Light .49 .35, .62 .43 .24, .59
Moderate .55 .42, .67 .50 .32, .64
Vigorous .29 .12, .45 .37 .18, .54
MVPA .52 .38, .64 .50 .32, .64

Fitbit vs. Romanzini 
Time by Intensity (min/hr)

Sedentary .54 .41, .66 .56 .39, .69
Light .43 .28, .57 .41 .21, .57
Moderate .54 .40, .65 .49 .31, .64
Vigorous .48 .33, .60 .50 .33, .65
MVPA .54 .40, .66 .51 .33, .65

Evenson vs. Romanzini 
Time by Intensity (min/hr)

Sedentary .86 .81, .90 .84 .76, .89
Light .83 .77, .88 .80 .71, .87
Moderate .77 .68, .83 .82 .74, .88
Vigorous .83 .77, .88 .88 .81, .92
MVPA .92 .88, .94 .94 .90, .96

Note. MVPA = moderate and vigorous intensity physical activity.
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than the AG_Romanzini estimate. Spearman correla
tions between Fitbit and ActiGraph change estimates 
were .34 (95% CI: .04, .59) for steps but only .05 (95% 
CI: −.26, .36) for AG_Evenson MVPA estimates and .14 
(95% CI: −.18, .43) for AG_Romanzini MVPA estimates. 
Restricting the change analysis to 21 children with 3 
+ valid days for both devices at each time point did not 
substantively influence estimates of average change in 
steps or MVPA. However, the correlation between Fitbit 
and ActiGraph estimates of change was stronger for 
steps (rs =.62; 95% CI: .26, .83), but not for MVPA 
(AG_Evenson rs = .04, 95% CI: −.40, .46; 
AG_Romanzini rs = .18, 95% CI: −.28, .57). For compar
ison, correlations between the AG_Evenson and 
AG_Romanzini MVPA change estimates were .88 (.79, 
.94) (n = 40) and .94 (.86, .98) (n = 21).

Discussion

The primary aim of this study was to compare free-living 
estimates of physical activity from a wrist-worn Fitbit 
Flex 2 to a waist-worn ActiGraph GT9X Link in 
a diverse sample of elementary school children. Two 
different ActiGraph youth cut-points were used to gen
erate intensity-specific PA estimates, which allowed us 
to examine the effect of cut-point choice on the agree
ment between Fitbit and ActiGraph estimates. We 
observed average Fitbit estimates of steps to be approxi
mately one-third higher than average ActiGraph esti
mates. The direction and magnitude of Fitbit versus 
ActiGraph differences in intensity-specific estimates 
were found to differ substantially depending upon the 
ActiGraph cut-points used. Equivalence testing con
firmed that all Fitbit minus Actigraph differences fell 
outside the designated ±10% equivalence regions indi
cating non-equivalence, with the exception of Fitbit 
sedentary time, when compared to AG_Romanzini 
sedentary time. However, there was good rank-order 
agreement between step estimates from the two devices, 
and moderate agreement in estimates of MVPA regard
less of the ActiGraph cut-points used.

To our knowledge, this is the first study to examine 
the validity of a wrist-worn Fitbit device in a diverse 
sample of school-aged youth during free-living condi
tions. The observed agreement between Flex 2 and 
ActiGraph GT9X estimates of MVPA is similar to that 
reported in a study of 27 preschool children who wore 
both the original Fitbit Flex and an ActiGraph GT3X+ 
over a 24-hr period (r = .58; MAPE = 55.7%; Byun et al., 
2018). Other studies have evaluated the validity of wrist- 
worn Fitbit devices in children and adolescents during 
standardized laboratory- and field-based activities. For 
example, Godino et al. (2020) reported that the Charge 

HR underestimated steps by 11.8 steps/min compared to 
direct observation and overestimated energy expendi
ture by .55 METs/min compared to indirect calorimetry 
during a combination of 14 standardized activities com
pleted by 59 boys and girls aged 9–11 years. In another 
study, Kang et al. (2019) compared the ability of the 
Charge HR and the ActiGraph GT3x+ (worn at the 
wrist) to correctly classify activity intensity in 43 chil
dren (aged 8–12 years) who completed 3-min bouts of 
12 physical activities that ranged in intensity from 
sedentary to vigorous. Compared to estimates measured 
by a Cosmed portable metabolic unit, the Charge HR 
showed a moderate level of agreement (70.8%) for clas
sifying MVPA, which was somewhat lower than the 
81.8% agreement reported for the ActiGraph GT3x+ 
worn at the wrist.

One factor potentially contributing to the higher 
Fitbit estimates of steps and vigorous intensity PA 
observed in the current study (compared to 
AG_Evenson estimates) is that this device was worn on 
the non-dominant wrist, whereas the ActiGraph was 
worn on the waist. In a study of 188 children aged 9– 
12 years, ActiGraph GT3X+ estimates of MVPA were 
significantly higher from devices worn at the wrist, 
compared to devices simultaneously worn at the waist 
(McLellan et al., 2018). In addition, a recent study by 
Clevenger et al. (2019) found that Fitbit Flex 2 devices 
worn on the non-dominant wrist generated higher esti
mates of steps and activity minutes (5% and 20%, 
respectively) than Flex 2 devices simultaneously worn 
on the dominant wrist for 4 days in free-living condi
tions. Another potential factor contributing to the dif
ferences observed in the current study is the use of 
1-minute epochs when classifying ActiGraph activity 
intensity levels. While this was done to match the 
epoch length of the Fitbit data, it is known that shorter 
epoch lengths (e.g., 15-s) are better able to capture 
sporadic bursts of higher intensity PA that are common 
in children (Migueles et al., 2017).

Most validation studies compare estimates from dif
ferent measures at a single point in time. While sufficient 
to evaluate the ability of an instrument to correctly 
discriminate PA levels across individuals, such studies 
do not assess an instrument’s ability to capture changes 
in PA behaviors over time, which is important when 
examining longitudinal trends or the effectiveness of 
a PA intervention. The few prior studies that compared 
estimates of PA change across measurement approaches 
have predominantly focused on the agreement between 
objective and subjective measures of change, finding 
poor concordance (Limb et al., 2019; Nicaise et al., 
2014). We were unable to identify any prior compari
sons of PA change estimates between commercial- and 
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research-grade objective measures in youth or adults. In 
this study, we addressed this aim in a subsample of 40 
children with sufficient data and observed no statistically 
significant differences in Fitbit and ActiGraph estimates 
of PA change over a 3-month period. However, only 
modest correlations were observed between estimates of 
step change from the two devices and estimates of 
MVPA change were not correlated regardless of the 
ActiGraph cut-points used. These results suggest that 
correlations between estimates of PA change are likely 
to be attenuated compared to the correlation between 
two PA measures during a single measurement period. 
This should not be surprising given that discrepancies in 
PA estimates at each measurement point will be com
pounded when quantifying the change in PA and that 
these additive errors will more easily mask the smaller 
within-subject changes in PA that are likely to occur 
over time. However, these findings should be interpreted 
with caution given the limited number of subjects with 
measures of PA change and the small magnitude of PA 
changes observed using either measure. Future studies 
should examine this issue in larger samples that have 
experienced clinically meaningful changes in PA.

A key strength of the current study is that it is one of 
the first studies to examine the validity of a wrist-worn 
Fitbit device in school-aged youth during free-living 
conditions. This addresses an important gap, as results 
from controlled laboratory studies may not reflect the 
magnitude of differences in device estimates in natural 
environments where children are likely to spend most of 
their time in non-structured physical activities. Prior 
studies have also been conducted in relatively small 
samples (19 to 59 children) and, to our knowledge, this 
is the first study to assess the ability of a wrist-worn 
Fitbit device to capture changes in youth physical activ
ity over time. Finally, few prior studies in youth have 
examined the extent to which cut-point selection may 
influence the agreement between Fitbit and ActiGraph 
intensity-specific PA estimates.

This study also has several limitations and delimita
tions that should be considered when interpreting these 
results. We compared Flex 2 and ActiGraph estimates 
during concordant wear periods using an algorithm 
developed for use with ActiGraph count data but mod
ified it to use minute by minute step data from both 
devices. Some misclassification of wear time is inevitable 
using this algorithm, and this misclassification may have 
been greater in the current study when applied to step 
data. The inclusion of minutes of non-concordant wear 
would increase discrepancies between device estimates 
and reduce the correlation between Fitbit and 
ActiGraph estimates of PA change. In addition, the dif
ferences observed between Flex 2 and ActiGraph 

estimates should not be attributed solely to error in the 
Fitbit device as the ActiGraph is not a gold standard 
measure and has known sources of error in measuring 
free-living PA in youth and adults (Dowd et al., 2018; 
Lynch et al., 2019). These potential errors in ActiGraph 
estimates include those attributable to the cut-points 
used to classify PA intensity, as clearly demonstrated by 
the current results. An additional source of error in our 
ActiGraph estimates is the use of intensity cut-points that 
were developed from data collected in 15-s epochs using 
earlier ActiGraph models. While studies have generally 
found good to strong agreement in counts and intensity 
classification across newer ActiGraph models (Clevenger 
et al., 2020; Montoye et al., 2018), the use of a different 
ActiGraph model may have introduced additional error 
in our intensity estimates. Lastly, commercial devices are 
constantly evolving with updates to firmware and the 
release of newer models with modified, but proprietary, 
algorithms (e.g., the Fitbit Ace, a newly introduced model 
targeted specifically for youth). Therefore, these results 
may not accurately reflect the level of accuracy of the 
same model at a later date or with subsequent models. 
The above issues likely introduce random error into both 
measures of physical activity, thereby increasing the mag
nitude of observed differences. Therefore, these results 
may underestimate the true level of agreement between 
the two devices.

In conclusion, the level of agreement between Fitbit Flex 
2 and ActiGraph estimates in free-living youth may depend, 
in large part, upon the ActiGraph cut-points used to classify 
PA intensity. However, there is fair to good agreement 
between the Flex 2 and ActiGraph in ranking children’s 
daily steps and MVPA regardless of the cut-points used, 
indicating the potential utility of wrist-worn wearables as 
a relative measure of free-living PA in youth. There may be 
lower concordance between these devices in assessing 
changes in PA over time. Future studies should examine 
the agreement between Fitbit and ActiGraph estimates of 
PA change in larger samples of free-living youth experien
cing clinically meaningful levels of PA change.
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